

What are you missing with current tests?

Traditional methods for genetic analysis are limited in the type of variants they detect and the amount of genome coverage they provide, reducing their potential utility.

Single-gene test

Provide data for only one gene, which may or may not be informative for diagnosis

*l*lultigene panels

Focus on a minimal selection of genes with known clinical relevance and do not allow for examination of new and emerging targets

Chromosomal microarrays (CMA)

Analyze < 0.01% of the genome, missing opportunities to find underlying genetic causes for disease⁶

Vhole-exome sequencing WES)

Sequences the protein coding regions of genes that account for around 2% of the genome leaving 98% unexplored

Iterative testing places additional burdens on an already stressed health care system, requires multiple patient samples, adds complexity to test ordering, and increases the cost and time to answer.

Whole-genome sequencing (WGS) provides the most comprehensive analysis of geneomic variants among all clinical genomic testing methods⁷⁻⁹

It is clear WGS is contributing significantly to end diagnostic odysseys in rare disease. With guidelines advocating use as a first–tier test,¹⁰ inclusion in national health care systems,¹¹ and increasing evidence of economic value when used as a first–tier test,¹² genome sequencing appears to be on the path toward standard of care.

	Sanger*	Targeted NGS*	PCR*	CMA*	WES*	WGS*
Single-Nucleotide Variants (SNVs)	~	✓	~		~	~
Insertions & Deletions (Indels)	~	✓	~	~	~	~
Copy Number Variants (CNVs)		✓	~	~	✓	~
Repeat Expansions			~			~
Structural Variants (SVs)				~	~	~
Mitochondrial	~	✓			~	~
Paralogs	~		~			~

✓ Limited capabilities
✓ Capable

^{*}Variant detection may vary depending on laboratory and test offering NGS = next-generation sequencing, PCR = polymerase chain reaction

your diagnostic potential

"In situations where there is not the luxury of waiting, I see it as a moral imperative and an obligation for us to do everything possible in these cases to get to an answer as quickly as possible."

Luca Brunelli, MD, PhD Neonatologist University of Utah Health WGS provides the broadest coverage of the human genome and includes regions NOT targeted by other methods.^{13,14} In a large randomized-controlled trial, WGS demonstrated the greatest success in finding a diagnosis in rare disease.¹⁵

Advantages of WGS:

Get to a diagnosis faster, with lower costs^{16,17}

Find actionable answers, even when a negative result is returned¹⁸

Enable more personalized care management than other genomic tests¹⁵

Obtain a comprehensive view across the genome, including coding and noncoding regions¹⁶

Detect a diverse range of variants in a single assay^{16,19-26}

In addition, WGS data can be stored and reanalyzed as new gene-disease associations are discovered.

Of all genomic testing methods, whole-genome sequencing has the potential to offer the highest likelihood of finding a diagnosis.²⁷

Advances in genomic testing are leading to answers faster than ever before.

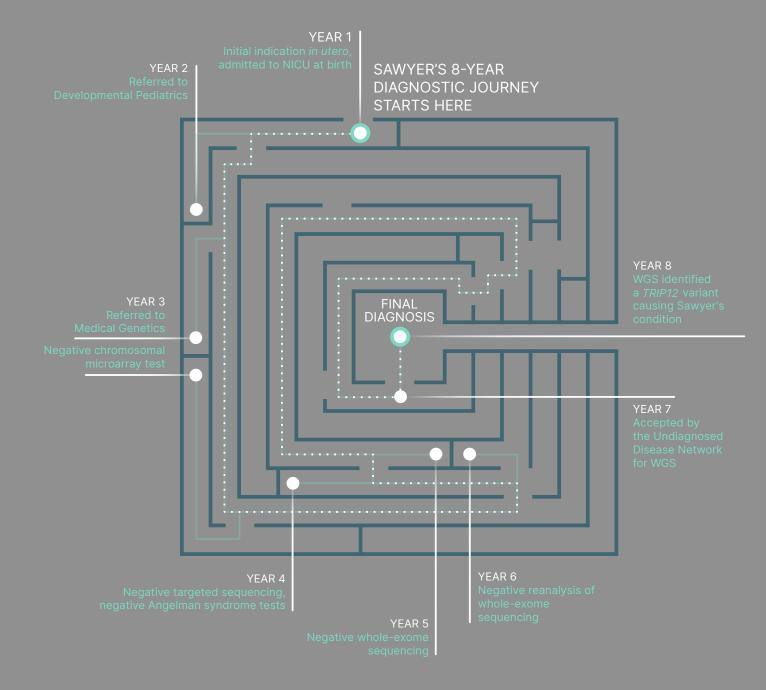
- A single, comprehensive WGS test can provide more information and be completed more quickly than multiple, iterative tests²⁸
- WGS can save years on the time to diagnosis compared to standard genetic testing^{29,30}

WGS can help provide answers more quickly in patients with immature phenotypes or those with heterogenous symptoms.³¹

WGS can provide answers faster than standard testing*

Acutely ill NICU infants:

Time to diagnosis using WGS vs standard genetic tests in the NICU


Pediatric patients:

Average time to diagnosis using WGS vs standard genetic tests in pediatric patients

^{*} Standard tests include: CMA, fluorescence in situ hybridization (FISH), karyotype, targeted gene panels, methylation studies, and gene detection or duplication assays

Sawyer was on an 8-year diagnostic odyssey before his family found an answer with WGS.³²

Increased actionability

WGS has been shown to impact clinical management

Study	Impact of clinical management driven by genetic diseases diagnosed by WGS	% Change in management
Dimmock (2021) ¹²	Change in surgical procedures, medication, diet, and length of hospital course	61%
Lee (2021) ³³	Immediate changes in treatment strategies after undergoing WGS	23%
Krantz (2021) ¹⁵	Clinical management modification, including change of treatment and care	75%
Wang (2021) ³⁴	Therapeutic strategy change including transplant, diet, medication change, etc	48%
Sandford (2019) ³⁵	Genome-informed changes in pharmacotherapy and transition to palliative care	76%
French (2019) ¹⁷	Modification of treatments and care pathways and/or informing palliative care decisions	70%
Scocchia (2019) ³⁶	Clinical management modification including referrals to specialists, avoidance of invasive muscle biopsies, additional clinical investigations, genetic counseling, and palliative care	49%
Mestek-Boukhibar (2018) ³⁷	Enabled counseling on prognosis, avoidance of unnecessary investigations, and informed recurrence risk	30%
Petrikin (2018) ²⁹	Enable consideration of acute precision intervention in time for critically ill patients	95%
Farnaes (2018) ¹⁹	Avoidance of invasive test and/or transplant, reducing patient costs by \$800,000-\$2,000,000	72%
Bick (2017) ³	Supported treatment decisions and/or medical surveillance	75%
van Diemen (2018) ³⁸	Withdrawal of intensive care treatment	71%
Stravopoulos (2016) ³⁹	Increased diagnostic yield of WGS can have a significant impact on clinical care and management that goes beyond genetic counseling	79%

A diagnosis can be life-changing

When WGS is implemented early in the diagnostic pathway, it has the potential to offer life-changing options to patients and their families. Identifying a disease-associated variant can lead to a diagnosis that can inform care management or future family planning.

Difference in change of management rates with WGS vs CMA²⁷

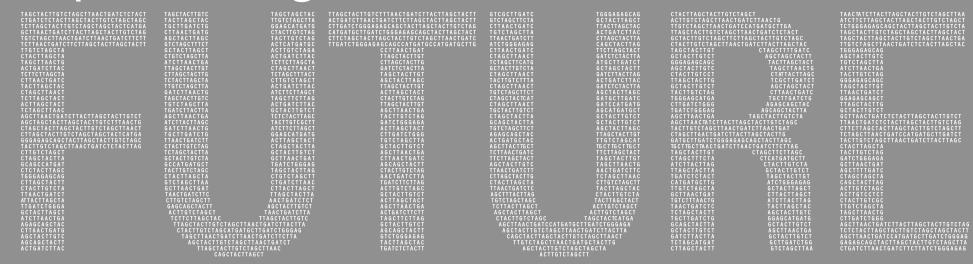
Rate from patients with change of management is higher with WGS than with CMA*

Changes to care may include:

Pharmacotherapy

Referral to specialists

Avoidance of unnecessary procedures or treatments



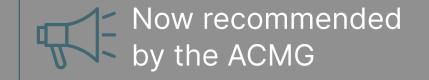
Access to precision medicinebased approaches

Informed reproductive risk counseling for parents and other family members

A promising

for all

WGS and WES are already in use and showing positive results in several neonatal intensive care units (NICU)^{15,40} and is recommended by the ACMG as a first or second-tier test.


With its improved diagnostic performance and faster time to answer, WGS holds the promise of helping patients and their families end a diagnostic odyssey—or prevent one altogether—and focus on care management.

→ Click here to learn how patients have benefited from WGS

Request WGS for your patients from your preferred laboratory

Anxhela Gustafson, PhDScientist

Genomics Institute at Shriners Children's

In 2021, the American College of Medical Genetics and Genomics (ACMG) released guidance recommending the use of WES or WGS as first- or second-tier tests in patients with one or more congenital anomalies prior to one year of age or intellectual disabilities/ developmental delay prior to eighteen years of age.¹⁸

References

- 1. Shire. Rare Disease Impact Report: Insights from patients and the medical community. Global Genes website. globalgenes.org/wp-content/uploads/2013/04/ShireReport-1.pdf. Published 2013. Accessed March 17, 2022.
- 2. Global Commission on Rare Disease. Global commission to end the diagnostic odyssey for children with a rare disease. global raredisease commission. com/. Accessed March 17, 2022.
- 3. Bick D, Jones M, Taylor SL, Taft RJ, Belmont J. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. *J Med Genet*. 2019;56(12):783-791. doi:10.1136/jmedgenet-2019-106111
- 4. Nguengang Wakap S, Lambert DM, Olry A, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. *Eur J Hum Genet*. 2020;28:165–173. doi.org/10.1038/s41431-019-0508-0
- 5. Ferreira CR. The burden of rare diseases. *Am J Med Genet A*. 2019;179(6):885-892. doi:10.1002/aimq.a.61124
- 6. Illumina. Data on file. March 2022.
- 7. Lionel AC, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. *Genet Med.* 2018;20(4):435-443. doi:10.1038/gim.2017.119
- 8. Dolzenko E, van Vugt JJFA, Shaw RJ, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. *Genome Res*. 2017;27(11):1895-1903. doi:10.1101/gr.225672.117
- 9. Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. *Bioinformatics*. 2016;32(8):1220-1222. doi:10.1093/bioinformatics/btv710
- 10. Malinowski J, Miller DT, Demmer L, et al. Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. *Genet Med*. 2020;22(6):986-1004. doi:10.1038/s41436-020-0771-z
- 11. 100,000 Genomes Project Pilot Investigators, Smedley D, Smith KR, et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care Preliminary Report. *N Engl J Med*. 2021;385(20):1868-1880. doi:10.1056/NEJMoa2035790
- 12. Dimmock D, Caylor S, Waldman B, et al. Project Baby Bear: Rapid precision care incorporating rWGS in 5 California children's hospitals demonstrates improved clinical outcomes and reduced costs of care. *Am J Hum Genet*. 2021 May 29S0002-9297(21)00192-0. doi: 10.1016/j.ajhg.2021.05.008

- 13. Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES?. *Hum Genet*. 2016;135(3):359-362. doi:10.1007/s00439-015-1631-9
- 14. Belkadi A, Bolze A, Itan Y, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. *Proc Natl Acad Sci U S A*. 2015;112(17):5473-5478. doi:10.1073/pnas.1418631112
- 15. NICUSeq Study Group, Krantz ID, Medne L, et al. Effect of Whole-Genome Sequencing on the Clinical Management of Acutely III Infants With Suspected Genetic Disease: A Randomized Clinical Trial. *AMA Pediatr*. 2021;e213496. doi:10.1001/jamapediatrics.2021.3496
- 16. Lionel AC, Costain G, Monfared N, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. *Genet Med.* 2018;20(4):435-443. doi:10.1038/gim.2017.119
- 17. French CE, Delon I, Dolling H, et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. *Intensive Care Med*. 2019;45(5):627-636. doi:10.1007/s00134-019-05552-x
- 18. Manickam K, McClain MR, Demmer LA, et al. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). *Genet Med*. 2021;10.1038/s41436-021-01242-6. doi:10.1038/s41436-021-01242-6
- 19. Farnaes L, Hildreth A, Sweeney NM, et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. *NPJ Genom Med*. 2018;3:10. doi:10.1038/s41525-018-0049-4
- 20. Lindstrand A, Eisfeldt J, Pettersson M, et al. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. *Genome Med.* 2019;11(1):68. doi:10.1186/s13073-019-0675-1
- 21. Sanghvi RV, Buhay CJ, Powell BC, et al. Characterizing reduced coverage regions through comparison of exome and genome sequencing data across 10 centers. *Genet Med.* 2018;20(8):855-866. doi:10.1038/gim.2017.192
- 22. Dolzhenko E, van Vugt JJFA, Shaw RJ, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. *Genome Res.* 2017;27(11):1895-1903. doi:10.1101/qr.225672.117

- 23. Gross AM, Ajay SS, Rajan V, et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease. *Genet Med.* 2019;21(5):1121-1130. doi:10.1038/s41436-018-0295-y
- 24. Chen X, Sanchis-Juan A, French CE, et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. *Genet Med*. 2020;22(5):945-953. doi:10.1038/s41436-020-0754-0
- 25. Alfares A, Aloraini T, Subaie LA, et al. Whole-genome sequencing offers additional but limited clinical utility compared with reanalysis of whole-exome sequencing. *Genet Med.* 2018;20(11):1328-1333. doi:10.1038/gim.2018.41
- 26. Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. *Bioinformatics*. 2016;32(8):1220-1222. doi:10.1093/bioinformatics/btv710
- 27. Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. *NPJ Genomic Med.* 2018;3:16. doi. org/10.1038/s41525-018-0053-8
- 28. Sun F, Oristaglio J, Levy SE, et al. *Genetic Testing for Developmental Disabilities, Intellectual Disability, and Autism Spectrum Disorder* [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2015 Jun. (Technical Briefs, No. 23.) Available from: ncbi.nlm.nih.gov/books/NBK304462/
- 29. Petrikin JE, Cakici JA, Clark MM, et al. The NSIGHT1- randomized controlled trial: rapid whole-genome sequencing for accelerated etiologic diagnosis in critically ill infants. *NPJ Genom Med*. 2018;3:6. doi:10.1038/s41525-018-0045-8
- 30. Soden SE, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. *Sci Transl Med*. 2014;6(265):265ra168. doi:10.1126/scitranslmed.3010076
- 31. Orphanet. Prevalence of rare diseases: Bibliographic data, Orphanet Report Series, Rare Diseases collection, January 2022, Number 1: Diseases listed in alphabetical order. orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf. Accessed March 17, 2022.
- 32. Sawyer's Journey. facebook.com/sawyersjourneyTRIP12/. Created March 13, 2014. Accessed December 15, 2021.
- 33. Lee HF, Chi CS, Tsai CR. Diagnostic yield and treatment impact of whole-genome sequencing in paediatric neurological disorders. *Dev Med Child Neurol*. 2021 Aug;63(8):934-938. doi: 10.1111/dmcn.14722

- 34. Wang H, Lu Y, Dong X, et al. Optimized trio genome sequencing (OTGS) as a first-tier genetic test in critically ill infants: practice in China. *Hum Genet*. 2020;139(4):473-482. doi:10.1007/s00439-019-02103-8
- 35. Sanford EF, Clark MM, Farnaes L, et al. Rapid Whole Genome Sequencing Has Clinical Utility in Children in the PICU. *Pediatr Crit Care Med*. 2019;20(11):1007-1020. doi:10.1097/PCC.000000000000000056
- 36. Scocchia A, Wigby KM, Masser-Frye D, et al. Clinical whole genome sequencing as a first-tier test at a resource-limited dysmorphology clinic in Mexico. *NPJ Genom Med*. 2019;4:5. doi:10.1038/s41525-018-0076-1
- 37. Mestek-Boukhibar L, Clement E, Jones WD, et al. Rapid Paediatric Sequencing (RaPS): comprehensive real-life workflow for rapid diagnosis of critically ill children. *J Med Genet*. 2018;55(11):721-728. doi:10.1136/jmedgenet-2018-105396
- 38. van Diemen CC, Kerstjens-Frederikse WS, Bergman KA, et al. Rapid Targeted Genomics in Critically III Newborns. *Pediatrics*. 2017;140(4):e20162854. doi:10.1542/peds.2016-2854
- 39. Stavropoulos DJ, Merico D, Jobling R, et al. Whole Genome Sequencing Expands Diagnostic Utility and Improves Clinical Management in Pediatric Medicine. NPJ Genom Med. 2016;1:15012-. doi:10.1038/npjgenmed.2015.12
- 40. Global Disease Commission. Ending the diagnostic odyssey for children with a rare disease. globalrarediseasecommission.com/Report. Published 2019. Accessed March 17, 2022.

Learn more at www.illumina.com